Search results for "Geometric optimal control"

showing 5 items of 5 documents

Optimal control and Clairaut-Liouville metrics with applications

2014

The work of this thesis is about the study of the conjugate and cut loci of 2D riemannian or almost-riemannian metrics. We take the point of view of optimal control to apply the Pontryagin Maximum Principle in the purpose of characterize the extremals of the problem considered.We use geometric, numerical and integrability methods to study some Liouville and Clairaut-Liouville metrics on the sphere. In the degenerate case of revolution, the study of the ellipsoid uses geometric methods to fix the cut locus and the nature of the conjugate locus in the oblate and prolate cases. In the general case, extremals will have two distinct type of comportment which correspond to those observed in the r…

Ising chains of spinsLiouville metricsCut LocusContrôle optimal géométrique[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Almost-Riemannian geometryChaînes de spins de type IsingGeometric optimal control[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]Conjugate Locus[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Métriques de LiouvilleMétrique pseudo-riemannienneLieu conjugué[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Lieu de coupure
researchProduct

Geometric optimal control : homotopic methods and applications

2012

This work is about geometric optimal control applied to celestial and quantum mechanics. We first dealt with the minimum fuel consumption problem of transfering a satellite around the Earth. This brought to the creation of the code HamPath which permits first of all to solve optimal control problem for which the command law is smooth. It is based on the Pontryagin Maximum Principle (PMP) and on the notion of conjugate point. This program combines shooting method, differential homotopic methods and tools to compute second order optimality conditions. Then we are interested in quantum control. We study first a system which consists in two different particles of spin 1/2 having two different r…

[SPI.OTHER]Engineering Sciences [physics]/OtherMéthodes de tirHomotopie différentielle[ SPI.OTHER ] Engineering Sciences [physics]/OtherOrbital transferContrôle optimal géométrique[SPI.OTHER] Engineering Sciences [physics]/Other[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Shooting methodsDifferential homotopyAutomatic differentiationContraste en RMNQuantum control[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Geometric optimal controlConditions du deuxième ordreTransfert orbitalLieux conjugués et de coupureDifférenciation automatiqueSecond order conditions[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]Cut and conjugate lociContrast imaging in NMRContrôle quantique
researchProduct

Sur le rôle des singularités hamiltoniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non-linéaire.

2012

This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polar…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear optics[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Polarization attractionContrôle optimal géométrique[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Quantum control[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Geometric optimal controloptique non-linéaireHamiltonian singularities[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]monodromie hamiltonienneattraction de polarisation[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]singularités hamiltoniennes[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]contrôle quantique[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Hamiltonian monodromy
researchProduct

A combination of algebraic, geometric and numerical methods in the contrast problem by saturation in magnetic resonance imaging

2014

In this article, the contrast imaging problem by saturation in nuclear magnetic resonance is modeled as a Mayer problem in optimal control. The optimal solution can be found as an extremal solution of the Maximum Principle and analyzed with the recent advanced techniques of geometric optimal control. This leads to a numerical investigation based on shooting and continuation methods implemented in the HamPath software. The results are compared with a direct approach to the optimization problem and implemented within the Bocop toolbox. In complement lmi techniques are used to estimate a global optimum. It is completed with the analysis of the saturation problem of an ensemble of spin particle…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Moment optimization[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Direct methodContrast imaging in NMR[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Geometric optimal controlShooting and continuation techniques
researchProduct

About the role of hamiltonian singularities in controlled systems : applications in quantum mechanics and nonlinear optics

2012

This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polar…

Monodromie hamiltonienneNonlinear opticsPolarization attractionContrôle optimal géométrique[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Quantum control[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Geometric optimal controlHamiltonian singularitiesSingularités hamiltoniennes[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]Optique non-linéaire[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Attraction de polarisationHamiltonian monodromyContrôle quantique
researchProduct